Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Molecular pathogenesis of multiple myeloma and its premalignant precursor
W. Michael Kuehl, P. Leif Bergsagel
W. Michael Kuehl, P. Leif Bergsagel
Published October 1, 2012
Citation Information: J Clin Invest. 2012;122(10):3456-3463. https://doi.org/10.1172/JCI61188.
View: Text | PDF
Category: Review Series

Molecular pathogenesis of multiple myeloma and its premalignant precursor

  • Text
  • PDF
Abstract

Multiple myeloma is a monoclonal tumor of plasma cells, and its development is preceded by a premalignant tumor with which it shares genetic abnormalities, including universal dysregulation of the cyclin D/retinoblastoma (cyclin D/RB) pathway. A complex interaction with the BM microenvironment, characterized by activation of osteoclasts and suppression of osteoblasts, leads to lytic bone disease. Intratumor genetic heterogeneity, which occurs in addition to intertumor heterogeneity, contributes to the rapid emergence of drug resistance in high-risk disease. Despite recent therapeutic advances, which have doubled the median survival time, myeloma continues to be a mostly incurable disease. Here we review the current understanding of myeloma pathogenesis and insight into new therapeutic strategies provided by animal models and genetic screens.

Authors

W. Michael Kuehl, P. Leif Bergsagel

×

Figure 1

Interactions of MM tumor cells with the BM microenvironment.

Options: View larger image (or click on image) Download as PowerPoint
Interactions of MM tumor cells with the BM microenvironment.
Five kinds ...
Five kinds of cells in the BM microenvironment are depicted, as well as a few of the complex interactions among these cells and MM cells. Some of the critical survival and growth factors, such as IL-6, are made by more than one kind of BM cell. External stimuli, such as hypoxia and internal signals resulting from dysregulated MYC, stimulate HIF-1α and VEGF secretion, which in turn stimulate endothelial cells to secrete IGF-1. The hallmark uncoupling of bone remodeling is partially explained by an increase in osteoclast activity (mediated by RANKL/RANK interactions, decreased osteoprotegerin (OPG), and increased MIP-1α) and a decrease in osteoblast activity (mediated by DKK1 and IL-3). The resultant increase in osteoclast activity stimulates the survival and growth of MM cells, at least partially by increased IL-6. Potential therapeutic agents that directly inhibit some of these interactions include bisphosphonates (which inhibit osteoclast function), anti-RANKL antibody, anti-DKK1 antibody, and exogenous OPG.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts