[PDF][PDF] Mitochondrial diagnostics: a multiplexed assay platform for comprehensive assessment of mitochondrial energy fluxes

KH Fisher-Wellman, MT Davidson, TM Narowski… - Cell reports, 2018 - cell.com
KH Fisher-Wellman, MT Davidson, TM Narowski, CT Lin, TR Koves, DM Muoio
Cell reports, 2018cell.com
Chronic metabolic diseases have been linked to molecular signatures of mitochondrial
dysfunction. Nonetheless, molecular remodeling of the transcriptome, proteome, and/or
metabolome does not necessarily translate to functional consequences that confer
physiologic phenotypes. The work here aims to bridge the gap between molecular and
functional phenomics by developing and validating a multiplexed assay platform for
comprehensive assessment of mitochondrial energy transduction. The diagnostic power of …
Summary
Chronic metabolic diseases have been linked to molecular signatures of mitochondrial dysfunction. Nonetheless, molecular remodeling of the transcriptome, proteome, and/or metabolome does not necessarily translate to functional consequences that confer physiologic phenotypes. The work here aims to bridge the gap between molecular and functional phenomics by developing and validating a multiplexed assay platform for comprehensive assessment of mitochondrial energy transduction. The diagnostic power of the platform stems from a modified version of the creatine kinase energetic clamp technique, performed in parallel with multiplexed analyses of dehydrogenase activities and ATP synthesis rates. Together, these assays provide diagnostic coverage of the mitochondrial network at a level approaching that gained by molecular "-omics" technologies. Application of the platform to a comparison of skeletal muscle versus heart mitochondria reveals mechanistic insights into tissue-specific distinctions in energy transfer efficiency. This platform opens exciting opportunities to unravel the connection between mitochondrial bioenergetics and human disease.
cell.com