Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization

C Traidl-Hoffmann, V Mariani, H Hochrein… - The Journal of …, 2005 - rupress.org
C Traidl-Hoffmann, V Mariani, H Hochrein, K Karg, H Wagner, J Ring, MJ Mueller, T Jakob…
The Journal of experimental medicine, 2005rupress.org
Pollen grains induce allergies in susceptible individuals by release of allergens upon
contact with mucosal membranes of the upper respiratory tract. We recently demonstrated
that pollen not only function as allergen carriers but also as rich sources of bioactive lipids
that attract cells involved in allergic inflammation such as neutrophils and eosinophils. Here
we demonstrate that soluble factors from birch (Betula alba L.) pollen activate human
dendritic cells (DCs) as documented by phenotypical and functional maturation and altered …
Pollen grains induce allergies in susceptible individuals by release of allergens upon contact with mucosal membranes of the upper respiratory tract. We recently demonstrated that pollen not only function as allergen carriers but also as rich sources of bioactive lipids that attract cells involved in allergic inflammation such as neutrophils and eosinophils. Here we demonstrate that soluble factors from birch (Betula alba L.) pollen activate human dendritic cells (DCs) as documented by phenotypical and functional maturation and altered cytokine production. Betula alba L. aqueous pollen extracts (Bet.-APE) selectively inhibited interleukin (IL)-12 p70 production of lipopolysaccharide (LPS)- or CD40L-activated DC, whereas IL-6, IL-10, and TNFα remained unchanged. Presence of Bet.-APE during DC activation resulted in DC with increased T helper type 2 (Th2) cell and reduced Th1 cell polarizing capacity. Chemical analysis of Bet.-APE revealed the presence of phytoprostanes (dinor isoprostanes) with prostaglandin E1-, F1-, A1-, or B1-ring systems of which only E1-phytoprostanes dose dependently inhibited the LPS-induced IL-12 p70 release and augmented the Th2 cell polarizing capacity of DC. These results suggest that pollen-derived E1-phytoprostanes not only resemble endogenous prostaglandin E2 structurally but also functionally in that they act as regulators that modulate human DC function in a fashion that favors Th2 cell polarization.
rupress.org