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Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers 
are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from 
the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity 
in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) 
could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC 
study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC 
study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial 
metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a 
top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular 
cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney 
hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.
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UAdCR predicts kidney failure in the nonmacroalbuminuric 
American, CRIC, and SMART2D cohorts and empagliflozin reduc-
es UAdCR. The UAdCR was also evaluated in early-stage disease 
(measured GFR >90 mL/min/1.73 m2) in a American Indian cohort 
with more than a 20-year follow-up (Table 1). As the majority of the 
participants in the American Indian cohort had nonmacroalbumin-
uria (n = 42 of the 54 participants), the association of UAdCR with 
longitudinal progression to ESKD was presented in this nonmacro-
albuminuric cohort. ESKD was associated with the top UAdCR ter-
tile (HR, 4.47; 95% CI, 1.53–13.06) (Supplemental Table 1). UAdCR 
was also measured in 2 untimed spot urine samples obtained 1 year 
apart, and it was found to be consistent across the individual paired 
samples (r = 0.665, P < 0.0001) (Supplemental Figure 3). Similar 
relationships that could be used to predict ESKD were found in the 
nonmacroalbuminuric participants in the CRIC study (adjusted 
HR, 2.36; 95% CI, 1.26–4.39) and SMART2D (adjusted HR, 2.39; 
95% CI, 1.08–5.29) (Figure 2, A and B, and Supplemental Table 2, 
combined data sets are shown in Supplemental Figure 2B). Of note, 
there were no significant correlations of UAdCR with the UACR 
or eGFR in the nonmacroalbuminuric participants from the CRIC 
study or SMART2D (Supplemental Table 3). Of the CRIC study 
participants with macroalbuminuria, there were modest associa-
tions between the top tertile of UAdCR and ESKD (HR, 1.10; 95% 
CI, 0.75–1.60) and mortality (HR, 1.33; 95% CI, 0.59–3.01).

To determine if UAdCR could be modified in nonmacroalbu-
minuric participants with normal or elevated measured GFR by 
glycemia or a therapeutic intervention with an SGLT2 inhibitor, 
the UAdCR was measured during euglycemia or hyperglycemia 
before and after empagliflozin in patients with T1D (clinical char-
acteristics described in Supplemental Table 4). Acute hyperglyce-
mia did not alter UAdCR levels (Supplemental Figure 4); however, 
empagliflozin significantly lowered UAdCR by 36.4% (Figure 2C).

Adenine is localized to regions of kidney fibrosis and is increased 
in patients with diabetes. A spatial metabolomics platform was 
developed to annotate small molecules (<700 Da) and per-
formed on kidney biopsies from individuals acting as healthy 
controls and patients with diabetes (clinical characteristics in 
Supplemental Table 4). Adenine was present at low intensity in 
normal glomeruli and blood vessels in the healthy control kid-
ney (Figure 3A) and enhanced in regions of arteriolosclerosis, 
tubulointerstitial fibrosis, and early glomerulosclerosis in the 
diabetic kidney (Figure 3B). There was an overall increase in 
adenine in the whole section of kidney biopsies from partici-
pants with diabetes as compared with those from individuals 
acting as healthy controls (Figure 3C). The spatial adenine val-
ues in rat kidney sections were found to correlate well with the 
UAdCR in a Zucker diabetic fatty (ZDF) diabetic model (r = 0.73, 
P < 0.001; Supplemental Table 5).

Single-cell transcriptomics identify ribonucleoprotein biogenesis 
as a dominant pathway in nonmacroalbuminuric DKD. As ade-
nine was prominent in regions of tubular pathology in the dia-
betic kidney and empagliflozin treatment lowered the UAdCR in 
patients, proximal tubular cells were considered to be a target cell 
type affected by adenine. Single-cell transcriptomics of proximal 
tubular cells from patients with DKD from the Kidney Precision 
Medicine Project (KPMP) study (n = 28) and an unbiased pathway 
analysis were performed based on differentially regulated genes. 

Introduction
Progression to organ failure is marked by fibrosis and loss of 
architecture in solid organs, such as the kidney. In almost all 
progressive chronic kidney diseases (CKDs), the features that 
are most consistently associated with functional loss of the 
glomerular filtration rate (GFR) are the degree of glomerulo-
sclerosis, tubulointerstitial fibrosis, vascular injury, and pro-
teinuria (1–4). However, many patients who eventually devel-
op end-stage kidney disease (ESKD) are nonproteinuric at the 
time impaired GFR is recognized. Nonproteinuria is defined as 
a urine albumin-to-creatinine ratio (ACR) of less than or equal 
to 300 mg/creatinine or urine albumin excretion of less than 
or equal to 300 mg/d (5). As nonproteinuric or nonmacroalbu-
minuric diabetic kidney disease (DKD) accounts for more than 
40% of prevalent ESKD in patients with type 2 diabetes (T2D) 
(5–7) and 75% of prevalent CKD (GFR, <60 mL/min/1.73 m2) 
(8), identifying the patients at risk for progression in early stag-
es of disease is an important step to improve clinical outcomes. 
This is especially relevant as the armamentarium of therapies 
for DKD to mitigate kidney disease progression has rapidly 
expanded (9–11).

Establishing novel biomarkers that predict progression and 
represent biologically relevant pathways in DKD could improve 
the care of patients with diabetes. To identify novel biomarkers, 
we recently performed an untargeted urine metabolomics study 
in patients with T2D and impaired estimated GFR (eGFR) from 
the Chronic Renal Insufficiency Cohort (CRIC) study (12), and 
we identified 15 candidate metabolites associated with ESKD. 
A targeted assay validated 13 of these metabolites, one of which 
was adenine. As exogenous adenine has been found to cause kid-
ney failure in mice, rats, and dogs (13–15), we evaluated whether 
endogenous adenine could play a role in progression of kidney dis-
ease in patients with diabetes.

Results
Urine adenine/creatinine ratio predicts kidney failure and all-cause 
mortality in the CRIC and SMART2D cohorts. The baseline clin-
ical characteristics of the participants with diabetes from the 
CRIC and Singapore Study of Macro-angiopathy and Micro-vas-
cular Reactivity in Type 2 Diabetes (SMART2D) study are shown 
in Table 1. Of the 904 participants evaluated from the CRIC 
study, 558 had either normoalbuminuria or microalbuminuria, 
341 had macroalbuminuria, and 5 had no data for 24-hour albu-
min. The mean eGFR was 40 mL/min/1.73 m2. The top tertile 
of baseline urine adenine/creatinine ratio (UAdCR) was found 
to identify the participants with diabetes who were at high risk 
for ESKD and all-cause mortality (adjusted HR, 1.57; 95% CI, 
1.18–2.10; as compared with the lowest tertile) (Figure 1A), and a 
similar significant relationship was found using UAdCR as a con-
tinuous variable (Table 2). The top tertile of UAdCR was valuable 
as a tool to identify patients with diabetes at high risk for ESKD 
and all-cause mortality was confirmed in participants from the 
SMART2D study who had reduced eGFR and normoalbumin-
uria or microalbuminuria (adjusted HR, 1.77; 95% CI, 1.00–3.12) 
(Figure 1B and Table 2, data sets combined in Supplemental Fig-
ure 2A; supplemental material available online with this article; 
https://doi.org/10.1172/JCI170341DS1).
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receptor 1 (sTNFR1) and kidney 
injury molecule-1 (KIM1), kidney 
hypertrophy, kidney mTOR activ-
ity, and kidney matrix production 
(Figure 4, G–K, and Supplemental 
Figure 6).

Endogenous adenine contrib-
utes to DKD in db/db mice. To 
determine whether endogenous 
adenine plays a role in progres-
sion of DKD, methylthio-DAD-
Me-Immucillin-A (MTDIA), a 
small-molecule-specific inhib-
itor of methylthioadenosine 
phosphorylase (MTAP), was 
administered to db/db mice, 
a model of obese T2D. MTAP 
converts methylthioadenosine 
to adenine and is responsible 
for approximately 80% of ade-
nine production in mammali-
an cells (18). MTDIA was well 
tolerated and did not affect 
food intake, water intake, 
blood glucose levels, or body 
weight (Supplemental Table 6). 
MTDIA significantly reduced 
kidney adenine in db/db mice 
(Figure 5A) but not other 
metabolites linked to progres-
sion of kidney disease (Supple-
mental Table 7) (12). MTDIA 
significantly reduced serum 

cystatin C, kidney hypertrophy, and kidney KIM1 and partial-
ly reduced urine ACR, serum creatinine, urine KIM1, kidney 
matrix proteins, and mTOR activity in db/db mice (Figure 5, B–J).

Discussion
The results from this study demonstrate a role for endogenous 
adenine in kidney disease progression in the context of DKD. 
Urine levels of the AdCR identified patients with diabetes at high 
risk of kidney failure and all-cause mortality at all levels of albu-
minuria in the CRIC study, and this was verified in a cohort study 
from Singapore. The UAdCR could also identify patients who will 
develop ESKD even in the setting of normal or elevated GFR with-
out macroalbuminuria across ethnicities. Spatial metabolomics 
localized adenine to regions of vascular, tubular, and glomerular 
pathology in patients with diabetes who have normoalbuminuria 
and GFR. Adenine appears to be in the causal pathway of kidney 
fibrosis, as adenine was demonstrated to stimulate matrix mole-
cules in proximal tubular cells via mTOR and was causative of kid-
ney matrix production in mice, and inhibiting adenine production 
was protective in diabetic mice.

Biomarkers in the potentially causal pathways have not pre-
viously been identified for kidney disease progression in non-
macroalbuminuric patients with diabetes to our knowledge. 
Microalbuminuria is clearly a risk factor for kidney disease 

The top pathway identified was the ribosomal nucleoprotein bio-
genesis pathway in patients without macroalbuminuria and low 
eGFR (Figure 4, A and B). In addition, small and large ribosom-
al subunit organization pathways were also upregulated in these 
patients. Replication of these results from the KPMP study was 
found in the Control of Renal Oxygen Consumption, Mitochon-
drial Dysfunction, and Insulin Resistance (CROCODILE) study 
in patients with diabetes without macroalbuminuria and normal 
GFR (Figure 4C). As ribonucleoprotein biogenesis and small and 
large ribosomal subunit organization is closely linked to activity 
of mTOR (16), and adenine has been found to stimulate mTOR 
(17), this pathway was evaluated for its ability to mediate ade-
nine-induced effects on proximal tubular cells.

Mechanism of adenine-induced matrix production is via the mTOR 
pathway, and adenine increases KIM1 and sTNFR1 in mice. To deter-
mine whether adenine could be in the causative pathway for tissue 
fibrosis, adenine was added to mouse and human proximal tubular 
cells. There was a robust and early stimulation of fibronectin by ade-
nine (Figure 4D and Supplemental Figure 5A). In addition, adenine 
stimulated mTOR activity, as demonstrated by enhanced phosphory-
lation of S6 kinase (Figure 4E and Supplemental Figure 5B). Inhibition 
of mTORC1 with rapamycin blocked adenine-induced production of 
fibronectin (Figure 4, E and F). Exposure of adenine to normal mice 
stimulated blood and kidney levels of soluble tumor necrosis factor 

Table 1. Baseline characteristics of patients with diabetes in the American Indian, CRIC, and 
SMART2D studies

Characteristics American cohort (n = 54) CRIC cohort (n = 904) SMART2D cohort (n = 309)
Index age (yr) 45.1 ± 9.6 60 ± 9.4 64.5 ± 9.6
Sex

Male, n (%) 13 (24%) 515 (57%) 176 (57%)
Female, n (%) 41 (76%) 390 (43%) 133 (43%)

Race and ethnicity, n (%) American Indian, 54 (100%) Black, 376 (41%);  
White, 350 (39%);  

Hispanic, 141 (16%);  
Other, 37 (4%)

Chinese, 163 (53%);  
Indian (Asian), 75 (24%);  

Malay, 71 (23%)

Current smoker
Yes, n (%) 510 (56%) 20 (7%)
No, n (%) 391 (43%) 289 (93%)

Body mass index (kg/m2), mean ± SD 35.4 ± 7.1 34 ± 7.8 27.7 ± 5.3
HbA1c (%), mean ± SD 9.6 ± 2 7.6 ± 1.6 7.6 ± 1.3
Mean artery pressure (mmHg), mean ± SD 93.2 ± 10 90 ± 13 98 ± 11
eGFRA (mL/min/1.73 m2), mean ± SD 139 ± 49 40 ± 12 53 ± 13
ACRB (mg/g), median (IQR) 40 (15–164) 116 (16–756) 27 (11–87)
ACR categoryC

<30 mg/g, n (%) 26 (48%) 298 (33%) 162 (52%)
30–300 mg/g, n (%) 16 (30%) 260 (28%) 147 (48%)
>300 mg/g, n (%) 12 (22%) 341 (39%)

eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; UACR, urine albumin-to-creatinine ratio. 
AData for the American cohort are measured GFR in mL/min. BContinuous ACR is summarized using median (IQR) 
because of its skewed distribution. CData for the CRIC cohort are based on 24-hour urine albumin or albumin/
creatinine values. ACR category and all other continuous variables are summarized using mean ± SD. Smoking status 
information was not collected for the American Indian cohort. “Other” denotes individuals who selected American 
Indian/Alaskan Native, Asian/Asian American, and/or Native Hawaiian/other Pacific Islander or denotes individuals 
who selected a combination of non-Hispanic White and American Indian/Alaskan Native, Asian/Asian American, 
and/or Native Hawaiian/other Pacific Islander.
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highly relevant to DKD progression. The link between adenine 
and pathologic features of DKD progression was suggested by 
spatial metabolomics, as adenine could be localized adjacent to 
atrophic tubules and in regions of arteriosclerotic blood vessels 
and glomerulosclerosis. The spatial localization implicated ade-
nine as a potential endogenous profibrotic factor.

Adenine is known to cause kidney pathology as an exoge-
nous toxin in mouse (24) and rat models (14) of CKD and pos-
sibly as an endogenous toxin in humans (25). The pathology of 
adenine- induced kidney disease includes glomerulosclerosis, 

tubular atrophy, interstitial fibrosis, and inflam-
matory cell infiltration (26, 27). The mechanism 
of adenine-induced kidney disease has not been 
established, although it has been postulated that 
conversion of adenine to 2,8-dihydroxyadenine (25) 
is a driver of CKD in patients with mutations of ade-
nine phosphoribosyltransferase (APRT), the major 
enzyme that metabolizes adenine to AMP. However, 
patients with CKD with APRT mutations are rare. 
Adenine itself is likely an endogenous tubular toxin 
based on the spatial metabolomic analysis and our 
finding that high urine adenine identified patients at 
high risk of ESKD. Adenine exposure enhances tubu-
lar cell matrix production via the mTOR pathway, and 
a prior study found that adenine is a potent stimulus 
for mTOR (17). Several published studies in mice and 
rats have also found that inhibiting mTOR protects 
against adenine-induced kidney disease (28–30). 

progression; however, as microalbuminuria can revert to nor-
moalbuminuria (19) the dependence upon microalbuminuria 
alone may not provide reliable prognostication for event rates 
of GFR decline or kidney failure. Noninvasive omics approach-
es using plasma and urine have identified promising candidate 
biomarkers (20–22); however, demonstration of a contributory 
role of these biomarkers to the disease process has been diffi-
cult to establish (23). In the present study, integration of spatial 
metabolomics and single-cell transcriptomics of human kid-
ney biopsies converged on adenine and the mTOR pathway as 

Figure 1. High urine adenine/creatinine levels identify patients with diabetes who are at high risk of end-stage kidney disease and mortality. (A) Participants 
with diabetes in the CRIC cohort (n = 904) had urine adenine/creatinine ratios (UAdCRs) measured within 1 year of enrollment and followed for 10 years. The par-
ticipants in the top tertile had the highest risk of end-stage kidney disease (ESKD) and all-cause mortality. (B) Participants from the SMART2D study (n = 309) 
had UAdCR measurements at the time of enrollment and were followed for 7 years. The participants in the top tertile for UAdCR had the highest risk for ESKD 
and all-cause mortality. A log-rank test was used to compare cumulative incidence curves in A and B. A P value of less than 0.05 was considered significant.

Table 2. Association of baseline urine adenine/creatinine ratio with risk 
for progression to ESKD and all-cause mortality in CRIC and SMART2D 
participants with type 2 diabetes with 7 years follow-up

CRIC cohort (n = 889) SMART2D cohort (n = 309)
Adenine/creatinine ratio HR (95% CI) P value HR (95% CI) P value
One-SD increment 1.15 (1.03–1.28) 0.010 1.48 (1.15–1.90) 0.003
Tertile 2 vs. tertile 1 1.59 (1.21–2.09) < 0.001 0.81 (0.44–1.50) 0.502
Tertile 3 vs. tertile 1 1.57 (1.18–2.10) 0.002 1.77 (1.00–3.12) 0.048

Multivariate Cox proportional hazard regression models were adjusted for baseline age, 
sex, ethnicity, body mass index, mean arterial pressure, hemoglobin A1c, eGFR, and 
natural-log transformed urine albumin/creatinine ratio. Urine adenine/creatinine ratio 
(UAdCR) was modeled as both continuous variable (1-SD increment in log2-transformed 
adenine/creatinine ratio) and categorical variable (low tertile as reference). There were 15 
participants in the CRIC study with missing values for the clinical covariates.

https://doi.org/10.1172/JCI170341
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The UAdCR measurement was closely associated with DKD 
progression in the nonmacroalbuminuric diabetic American 
Indian, the CRIC study, and SMART2D cohorts. As nonmac-
roalbuminuric DKD leads to ESKD in many patients with CKD 
and diabetes (7, 8, 33), the potentially new UAdCR biomarker 
could be of clinical value to identify those patients likely to 
progress. Furthermore, the benefit of SGLT2 inhibitors may be 
due in part to reduce adenine levels, as our study documented 
that short term use of empagliflozin significantly attenuated 
the UAdCR.

Strengths of our study included multiple analysis of sever-
al independent cohorts across different ages, ethnicities, and 
stages of DKD. Additional strengths include application of spa-
tial metabolomics and single-cell transcriptomics to identify a 
pathway linking adenine to mTOR in human kidney disease 
pathology and progression. A limitations of our study is that 
the role of adenine was not demonstrated in type 1 DKD and 
other causes of CKD.

In conclusion, urine samples from independent well-char-
acterized cohorts of patients with diabetes identified the UAd-

The mTOR pathway is likely relevant to human DKD, as a recent 
study found stimulation of mTOR activity in kidney biopsies 
from patients with DKD (31) and our study with kidney biopsies 
from KPMP and CROCODILE demonstrated that a number of 
outputs of mTOR are elevated in DKD. This includes pathways 
involved in bioenergetics and pathways related to stimulation 
of extracellular matrix molecules. Furthermore, adenine can 
increase the levels of KIM1 and sTNFR1, demonstrating that 
adenine is likely an initiator of downstream injury and inflam-
matory markers. Endogenous adenine production was blocked 
with a specific small-molecule inhibitor of MTAP (MTDIA) and 
found to protect against diabetic renal hypertrophy and ele-
vation of kidney KIM1 and was protective of decline in kidney 
function, as measured by serum cystatin C. It is possible that 
chronic MTAP inhibition with MTDIA could be developed as 
a safe therapeutic, as a prior study found that MTDIA extend-
ed life span in mice with colon cancer, and it was provided for 
294 days without evidence of toxicity (32). The role of adenine 
to accentuate mortality is not clear, although it is possible that 
adenine could be directly toxic to vascular cells.

Figure 2. High urine adenine/creatinine tertile identifies end-stage 
kidney disease outcome in nonmacroalbuminuric patients with diabe-
tes and empagliflozin-reduced urine adenine/creatinine ratio. (A and 
B) The participants with the top urine adenine/creatinine ratio (UAdCR) 
tertile had a significant increase in risk of end-stage kidney disease 
(ESKD) from the (A) CRIC (n = 551) and (B) SMART2D (n = 309) studies. 
(C) Patients with T1 diabetes underwent treatment with empagliflozin 
for 8 weeks, which reduced UAdCR levels (n = 40 patients). A log-rank 
test was used to compare cumulative incidence curves in A and B, and a 
2-sample t test was used to compare UAdCR levels in C. A P value of less 
than 0.05 was considered significant.
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CR as a robust predictor of ESKD and mortality independent of 
albuminuria and baseline eGFR, and spatial metabolomic and 
single-cell-transcriptomic studies from human kidney biop-
sies identified a potential role for endogenous adenine and the 
mTOR pathway in DKD. Studies in cells and mice identified a 

causative role for adenine, and a small-molecule therapeutic 
was found to block adenine production and was nephroprotec-
tive in a mouse model of T2D. Our results thus demonstrate that 
endogenous adenine could contribute to progressive kidney dis-
ease in the context of T2D.

Figure 3. Spatial metabolomics identifies adenine in regions of pathology in 
nonmacroalbuminuric patients with diabetes. (A) Adenine was localized to regions 
of normal glomeruli and vessels in the normal kidney. Yellow circles and red circles 
indicate the region of interest labeled on the AF image and adenine ion image, 
respectively. AF, autofluorescence. Scale bar: 200 μm (AF, adenine, PAS + adenine, 
and adenine); 50 μm (PAS). (B) In a diabetic kidney, adenine is diffusely increased 
across the tissue section and prominent in regions of sclerotic blood vessels, glom-
eruli with mild sclerosis, and regions of atrophic tubules and interstitial inflamma-
tion. Scale bar: 200 μm (AF, adenine, PAS + adenine, and adenine); 50 μm (PAS). (C) 
Quantitative assessment across healthy controls (n = 5 from the CROCODILE study) 
and diabetic samples (n = 8 T1D from CROCODILE and n = 8 T2D, 2 from CROCO-
DILE and 6 from Kidney KPMP) demonstrates a statistically significant increase 
of adenine in kidney tissue sections. Two-tailed Student’s t test was used for the 
comparison. Data represent mean ± SEM.
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Figure 4. Molecular pathways and events implicating the ribonucleoprotein biogenesis and mTOR pathways with adenine in DKD. (A and B) The protein 
synthesis (ribonucleoprotein [RNP] biogenesis) pathway increased in proximal tubule cells of patients with DKD without proteinuria. Single-cell- transcrip-
tomic data obtained from DKD kidney biopsies from the KPMP study were analyzed for differentially expressed genes in proximal tubules (PTs) of each DKD 
patient versus healthy reference tissue. Upregulated genes with an adjusted P ≤ 0.01 and ranked among the top 600 significant differentially expressed 
genes were subjected to pathway enrichment analysis using the Molecular Biology of the Cell Ontology (MBCO). Ranking for the RNP biogenesis pathway (a 
level-2 pathway canonically regulated by the mTOR pathway) is shown for 28 individual patients. Vertical dashed lines indicate P ≤ 0.01 for pathway ranking. 
(C) Up to the top 5, 5, 10, and 5 level-1 (dark red), level-2 (red), level-3 (blue), and level-4 (green) pathways, respectively, using MBCO are shown for patient 
1 (P ≤ 0.01). See blue lines in A and B. Single-cell-transcriptomic data from patients with T2D (n = 6) with low albuminuria compared with cohort specific 
healthy samples was analyzed to identify upregulated pathways in PT cells. Note that the RNP biogenesis pathway is the top ranked level-2 pathway in 
both independent studies. (D–F) Cell culture studies in mouse proximal tubular cells demonstrated an increase in (D) fibronectin and (E) phospho-S6 kinase 
and (F) that mediation of fibronectin (FN) upregulation is blocked by rapamycin, indicating that mTOR mediates adenine effect. (G–K) Adenine administra-
tion to mice increases (G) serum soluble tumor necrosis factor-1 (sTNFR1) and (H) plasma kidney injury marker-1 (KIM-1) and (I) stimulates kidney and (J and 
K) matrix molecules in the kidney (n = 12 in control group and n = 7 in adenine treated group). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 2-tailed 
Student’s t test was used for 2 group comparisons. One-way ANOVA was used for multiple group comparisons. Data represent mean ± SD.
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ments were performed on samples obtained at the 4-hour time point 
following euglycemia or hyperglycemia before and after empaglifloz-
in (25 mg/d) treatment for 8 weeks.

Urine metabolomics (Zip-Chip analysis). Urine samples from the 
American Indian, CRIC, SMART2D cohorts and ATIRMA urines were 
all analyzed using Zip-Chip (908 Devices) coupled with mass spectrom-
etry (38). A rapid throughput urine adenine/creatinine assay was devel-
oped that showed excellent correlation with the gold standard assay 
using LC-MS/MS (Supplemental Figure 1). The reportable linear range 
for urine adenine assay was 100 nM to 100 μM, with a limit of detection 
at 10 nM and coefficient of variation of less than 10% across the report-
able linear range. Metabolite separation was achieved with a microflu-
idic chip that integrates capillary electrophoresis with nanoelectrospray 
ionization through a Zip-Chip interface. Data acquisition was performed 
with a Q-Exactive mass spectrometer (Thermo Fisher Scientific) and 
Xcalibur-Quan Browser software (Thermo Fisher Scientific) for data 
processing. Detailed procedures were previously published (38).

Human kidney biopsies. Human kidney samples were obtained via 
the KPMP (ClinicalTrials.gov NCT04334707) and the CROCODILE 
studies (39–41). Samples were frozen in liquid nitrogen and stored at 
–80 °C until analysis. Snap-frozen sample preparation and sectioning 
procedures for MALDI–mass spectrometry imaging (MALDI-MSI) 
were published in ref. 42.

Animal studies. ZDF rat kidney and urine samples were provided 
by Epigen Inc. to verify that kidney spatial adenine correlated with the 
targeted urine adenine assay. C57BL/6J, db/m, and db/db mice were 

Methods
Clinical cohorts. The parent CRIC study recruited a racially diverse 
group aged 21–74 years; approximately 50% of recruits had diabetes, 
with a broad range of kidney function (34). The current study analyzed 
urine samples at study entry (from baseline 24-hour urine samples) 
from 904 CRIC study participants with diabetes and eGFR between 
20 and 70 mL/min/1.73 m2 and sample and outcome data available. 
SMART2D is an ongoing prospective cohort study of Southeast Asian 
participants with T2D recruited between 2011 and 2014 (35). Fasting 
spot urine samples were collected at baseline and stored at –80°C. To 
validate findings from the CRIC cohort, 309 participants from the 
SMART2D cohort with baseline eGFR of 20–70 mL/min/1.73 m2 and 
urine ACR of less than 300 μg/mg were evaluated. American Indi-
ans with early DKD were enrolled in a randomized clinical trial (36) 
(ClinicalTrials.gov NCT00340678). GFR was measured annually 
throughout the trial by the urinary clearance of iothalamate. Stored 
spot urine samples collected for 2 consecutive years were available 
from 54 participants and included for analysis. Additionally, urine 
samples were obtained under controlled euglycemic and hypergly-
cemic clamp conditions from a previously published clinical study in 
patients with T1D without macroalbuminuria (n = 42) to evaluate the 
effects of empagliflozin (Adjunctive-to-insulin and Renal Mechanis-
tic [ATIRMA], NCT01392560) (37). Euglycemic clamp (4–6 mM glu-
cose) conditions were maintained for approximately 4 hours before 
urine collection. The following day hyperglycemia (9–11 mM glucose) 
was maintained for 4 hours. Urine samples for adenine measure-

Figure 5. Methylthioadenosine phosphorylase inhibitor ameliorates kidney injury in db/db mice with type 2 diabetes. (A–C) Methylthio-DAD-
Me-Immucillin-A (MTDIA) significantly reduced kidney (A) adenine levels, (B) kidney hypertrophy, (C) kidney KIM-1 levels, and (D) urine KIM-1 
levels in diabetic mice. (E–G) MTDIA significantly reduced (E) diabetes-increased serum cystatin C and (F) partially reduced plasma creatinine and 
(G) albuminuria in diabetic mice. (H and I) Diabetes-induced kidney matrix protein levels were partially reduced by MTDIA. (J) Ribosomal S6 phos-
phorylation was partially reduced by MTDIA in the kidneys of db/db mice (n = 6 per group). *P < 0.05, **P < 0.01, ***P < 0.001, 2-tailed Student’s 
t test was used for 2 group comparisons. Data represent mean ± SD.
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race, body mass index, hemoglobin A1c, mean arterial pressure, base-
line eGFR, and urine ACR (natural log transformed) as covariates. The 
group with a UAdCR in the lowest tertile was used as reference. Due 
to the limited number of cases in the American Indian cohort, we only 
reported univariate Cox proportional hazards analysis for this cohort. 
To evaluate the pretreatment and posttreatment effect of empagli-
flozin on urine adenine in the ATIRMA cohort, we performed a linear 
regression analysis for repeated measures. Two-tailed Student’s t test 
was used for comparisons of features between 2 groups. A P value of 
less than 0.05 was considered significant.

Study approval. For the CRIC study, informed consent was obtained 
from participants. Protocols were approved by IRBs and Scientific and 
Data Coordinating Center (Philadelphia, Pennsylvania, USA). The 
SMART2D study was approved by the Singapore National Healthcare 
Group, and all participants provided written informed consent. The 
KPMP and CROCODILE studies were approved by the Institutional 
Review Board at Washington University, St. Louis, Missouri, and the Uni-
versity of Colorado, respectively, and written consent was obtained from 
all patients. The American Indian study was approved by the Institutional 
Review Board of the National Institute of Diabetes and Digestive and Kid-
ney Diseases, and all participants gave written informed consent. Mouse 
studies were carried out after IACUC approval from the University of Tex-
as Health Science Center at San Antonio.

Data availability. Values for all data points in graphs are reported in 
the Supporting Data Values file. Raw human data used in this study are 
confidential. Deidentified data are provided in the Supplemental Data 
file and are available from the corresponding author upon request.
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